Faster and improved 3-D head digitization in MEG using Kinect
نویسندگان
چکیده
Accuracy in localizing the brain areas that generate neuromagnetic activity in magnetoencephalography (MEG) is dependent on properly co-registering MEG data to the participant's structural magnetic resonance image (MRI). Effective MEG-MRI co-registration is, in turn, dependent on how accurately we can digitize anatomical landmarks on the surface of the head. In this study, we compared the performance of three devices-Polhemus electromagnetic system, NextEngine laser scanner and Microsoft Kinect for Windows-for source localization accuracy and MEG-MRI co-registration. A calibrated phantom was used for verifying the source localization accuracy. The Kinect improved source localization accuracy over the Polhemus and the laser scanner by 2.23 mm (137%) and 0.81 mm (50%), respectively. MEG-MRI co-registration accuracy was verified on data from five healthy human participants, who received the digitization process using all three devices. The Kinect device captured approximately 2000 times more surface points than the Polhemus in one third of the time (1 min compared to 3 min) and thrice as many points as the NextEngine laser scanner. Following automated surface matching, the calculated mean MEG-MRI co-registration error for the Kinect was improved by 2.85 mm with respect to the Polhemus device, and equivalent to the laser scanner. Importantly, the Kinect device automatically aligns 20-30 images per second in real-time, reducing the limitations on participant head movement during digitization that are implicit in the NextEngine laser scan (~1 min). We conclude that the Kinect scanner is an effective device for head digitization in MEG, providing the necessary accuracy in source localization and MEG-MRI co-registration, while reducing digitization time.
منابع مشابه
Co-registration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching.
OBJECTIVE To introduce a new technique for co-registration of Magnetoencephalography (MEG) with magnetic resonance imaging (MRI). We compare the accuracy of a new bite-bar with fixed fiducials to a previous technique whereby fiducial coils were attached proximal to landmarks on the skull. METHODS A bite-bar with fixed fiducial coils is used to determine the position of the head in the MEG co-...
متن کاملFace Replacement Demo using the Kinect Depth Sensor
This paper proposes a face-swap method, wherein the use of a depth sensor and improved algorithms are used to improve the quality and realism of a face swap process. By tracking head pose and facial features in 3D using a Kinect depth camera, an accurate model of the face can be constructed and used to deform a texture which is then drawn on top of a 2D video stream. The use of random regressio...
متن کاملA Head Pose Tracking System Using RGB-D Camera
In this paper, a fast head pose tracking system is introduced. It uses iterative closest point algorithm to register a dense face template to depth data captured by Kinect. It can achieve 33fps processing speed without specific optimization. To improve tracking robustness, head movement prediction is applied. We propose a novel scheme that can train several simple predictors together, enhancing...
متن کاملDetection of Alzheimer’s Disease in Elder People Using Gait Analysis and Kinect Camera
Introduction: Gait analysis through using modern technology for detection of Alzheimer's disease has found special attention by researchers over the last decade. In this study, skeletal data recorded with a Kinect camera, were used to analyze gait for the purpose of detecting Alzheimer's disease in elders. Method: In this applied-developmental experimental study, using a Kinect camera, data wer...
متن کاملDigitization and Visualization of Greenhouse Tomato Plants in Indoor Environments
This paper is concerned with the digitization and visualization of potted greenhouse tomato plants in indoor environments. For the digitization, an inexpensive and efficient commercial stereo sensor-a Microsoft Kinect-is used to separate visual information about tomato plants from background. Based on the Kinect, a 4-step approach that can automatically detect and segment stems of tomato plants...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014